Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 75
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Methods Mol Biol ; 2758: 109-124, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38549011

RESUMO

A number of different approaches have been used for quantitative peptidomics. In this protocol, we describe the method in which peptides are reacted with formaldehyde and sodium cyanoborohydride, which converts primary and secondary amines into tertiary amines. By using different combinations of regular reagents, deuterated reagents (2H), and reagents containing deuterium and 13C, it is possible to produce five isotopically distinct forms of the methylated peptides, which can be quantified by mass spectrometry. Peptides with free N-termini that are primary amines incorporate two methyl groups using this procedure, which differ by 2 Da for each of the five isotopic combinations. Peptides that contain unmodified lysine residues incorporate additional pairs of methyl groups, leading to larger mass differences between isotopic forms. The reagents are commercially available, relatively inexpensive, and chemically stable.


Assuntos
Aminas , Peptídeos , Peptídeos/química , Espectrometria de Massas/métodos , Metilação , Proteômica/métodos
2.
Methods Mol Biol ; 2758: 319-329, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38549022

RESUMO

Snake venom peptidomes are known to be a large source of molecules with different pharmacological properties. The complexity and variability of snake venoms, the presence of proteinases, and the lack of complete species-specific genome sequences make snake venom peptidome profiling a challenging task that requires especial technical strategies for sample processing and mass spectrometric analysis. Here, we describe a method for assessing the content of snake venom peptides and highlight the importance of sampling procedures, as they substantially influence the peptidomic complexity of snake venoms.


Assuntos
Peptídeos , Venenos de Serpentes , Venenos de Serpentes/química , Peptídeos/química , Espectrometria de Massas , Genoma , Peptídeo Hidrolases
3.
Methods Mol Biol ; 2758: 331-340, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38549023

RESUMO

Spider venoms are composed of hundreds of proteins and peptides. Several of these venom toxins are cysteine-rich peptides in the mass range of 3-9 kDa. Small peptides (<3 kDa) can be fully characterized by mass spectrometry analysis, while proteins are generally identified by the bottom-up approach in which proteins are first digested with trypsin to generate shorter peptides for MS/MS characterization. In general, it is sufficient for protein identification to sequence two or more peptides, but for venom peptidomics it is desirable to completely elucidate peptide sequences and the number of disulfide bonds in the molecules. In this chapter, we describe a methodology to completely sequence and determine the number of disulfide bonds of spider venom peptides in the mass range of 3-9 kDa by multiple enzyme digestion, mass spectrometry of native and digested peptides, de novo analysis, and sequence overlap alignment.


Assuntos
Venenos de Aranha , Aranhas , Animais , Espectrometria de Massas em Tandem , Venenos de Aranha/química , Peptídeos/química , Sequência de Aminoácidos , Dissulfetos/análise , Aranhas/metabolismo
4.
An Acad Bras Cienc ; 95(suppl 2): e20230365, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37909611

RESUMO

Obesity and depression, disorders associated with inflammation, have high incidences in women. Understanding the derangements present in the initial phase of obesity may point to factors that could help avoiding disease aggravation. The present study aimed at investigating the effects of a 6-months interdisciplinary therapy for weight loss in women with grade I obesity. Before and after the therapy, 37 middle-aged women donated blood and responded to questionnaires for depression and anxiety symptoms. Inflammatory parameters were evaluated in serum and a preliminary screening of the plasma proteome was performed. The therapy decreased anthropometric, psychological scores, and serum levels of inflammatory parameters. Depression and anxiety scores correlated positively with some inflammatory parameters. The proteomic analysis showed changes in proteins related to cholesterol metabolism and inflammatory response. Interdisciplinary therapy improves anthropometric and inflammatory statuses and ameliorating psychological symptoms. The decrease of MCP-1 levels after interdisciplinary therapy has not been reported so far, at the best of our knowledge. The present demonstration of positive associations of inflammatory markers and psychological scores indicate that these mediators may be useful to monitor psychological status in obesity. The present proteome data, although preliminary, pointed to plasma alterations indicative of improvement of inflammation after interdisciplinary therapy.


Assuntos
Proteoma , Proteômica , Pessoa de Meia-Idade , Humanos , Feminino , Obesidade , Inflamação/terapia , Inflamação/complicações , Estilo de Vida
5.
Biochem Biophys Res Commun ; 683: 149090, 2023 11 26.
Artigo em Inglês | MEDLINE | ID: mdl-37862779

RESUMO

Snake venoms are known to be major sources of peptides with different pharmacological properties. In this study, we comprehensively explored the venom peptidomes of three specimens of Lachesismuta, the largest venomous snake in South America, using mass spectrometry techniques. The analysis revealed 19 main chromatographic peaks common to all specimens. A total of 151 peptides were identified, including 69 from a metalloproteinase, 58 from the BPP-CNP precursor, and 24 from a l-amino acid oxidase. To our knowledge, 126 of these peptides were reported for the first time in this work, including a new SVMP-derived peptide fragment, Lm-10a. Our findings highlight the dynamic nature of toxin maturation in snake venoms, driven by proteolytic processing, post-translational modifications, and cryptide formation.


Assuntos
Bradicinina , L-Aminoácido Oxidase , L-Aminoácido Oxidase/química , Peptídeos/química , Venenos de Serpentes , Metaloproteases
6.
Biochem Biophys Res Commun, v. 683, 149090, nov. 2023
Artigo em Inglês | Sec. Est. Saúde SP, SESSP-IBPROD, Sec. Est. Saúde SP | ID: bud-5130

RESUMO

Snake venoms are known to be major sources of peptides with different pharmacological properties. In this study, we comprehensively explored the venom peptidomes of three specimens of Lachesis muta, the largest venomous snake in South America, using mass spectrometry techniques. The analysis revealed 19 main chromatographic peaks common to all specimens. A total of 151 peptides were identified, including 69 from a metalloproteinase, 58 from the BPP-CNP precursor, and 24 from a l-amino acid oxidase. To our knowledge, 126 of these peptides were reported for the first time in this work, including a new SVMP-derived peptide fragment, Lm-10a. Our findings highlight the dynamic nature of toxin maturation in snake venoms, driven by proteolytic processing, post-translational modifications, and cryptide formation.

7.
J Proteome Res ; 21(11): 2783-2797, 2022 11 04.
Artigo em Inglês | MEDLINE | ID: mdl-36260604

RESUMO

Acanthoscurria juruenicola is an Amazonian spider described for the first time almost a century ago. However, little is known about their venom composition. Here, we present a multiomics characterization of A. juruenicola venom by a combination of transcriptomics, proteomics, and peptidomics approaches. Transcriptomics of female venom glands resulted in 93,979 unique assembled mRNA transcript encoding proteins. A total of 92 proteins were identified in the venom by mass spectrometry, including 14 mature cysteine-rich peptides (CRPs). Quantitative analysis showed that CRPs, cysteine-rich secretory proteins, metalloproteases, carbonic anhydrases, and hyaluronidase comprise >90% of the venom proteome. Relative quantification of venom toxins was performed by DIA and DDA, revealing converging profiles of female and male specimens by both methods. Biochemical assays confirmed the presence of active hyaluronidases, phospholipases, and proteases in the venom. Moreover, the venom promoted in vivo paralytic activities in crickets, consistent with the high concentration of CRPs. Overall, we report a comprehensive analysis of the arsenal of toxins of A. juruenicola and highlight their potential biotechnological and pharmacological applications. Mass spectrometry data were deposited to the ProteomeXchange Consortium via the PRIDE repository with the dataset identifier PXD013149 and via the MassIVE repository with the dataset identifier MSV000087777.


Assuntos
Venenos de Aranha , Aranhas , Animais , Masculino , Feminino , Aranhas/genética , Aranhas/metabolismo , Venenos de Aranha/genética , Venenos de Aranha/química , Venenos de Aranha/metabolismo , Cisteína/metabolismo , Proteômica/métodos , Espectrometria de Massas/métodos , Proteoma/genética , Proteoma/metabolismo , Peptídeos/análise
8.
Brain Res ; 1789: 147951, 2022 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-35618016

RESUMO

Carboxypeptidase E (CPE) is an essential enzyme that contributes to the biosynthesis of the vast majority of neuropeptides and peptide hormones. There are several reports claiming that small decreases in CPE activity cause physiological changes in animals and/or cultured cells, but these studies did not provide evidence that neuropeptide levels were affected by decreased CPE activity. In the present study, we tested if CPE is a rate-limiting enzyme in neuropeptide production using CpeNeo mice, which contain a neomycin cassette within the Cpe gene that eliminates enzyme expression. Homozygous CpeNeo/Neo mice show defects found in Cpefat/fat and/or Cpe global knockout (KO) mice, including greatly decreased levels of most neuropeptides, severely impaired fertility, depressive-like behavior, adult-onset obesity, and anxiety-like behavior. Removal of the neomycin cassette with Flp recombinase under a germline promoter restored expression of CPE activity and resulted in normal behavioral and physiological properties, including levels of neuropeptides. Mice heterozygous for the CpeNeo allele have greatly reduced levels of Cpe mRNA and CPE-like enzymatic activity. Despite the decreased levels of Cpe expression, heterozygous CpeNeo mice are behaviorally and physiologically identical to wild-type mice, with normal levels of most neuropeptides. These results indicate that CPE is not a rate-limiting enzyme in the production of most neuropeptides, casting doubt upon studies claiming small decreases in CPE activity contribute to obesity or other physiological effects.


Assuntos
Carboxipeptidase H , Mutação com Perda de Função , Neuropeptídeos , RNA Mensageiro , Animais , Comportamento Animal/efeitos dos fármacos , Carboxipeptidase H/genética , Carboxipeptidase H/metabolismo , Camundongos , Camundongos Knockout , Neomicina/farmacologia , Neuropeptídeos/metabolismo , Obesidade/genética , Obesidade/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo
10.
Nutr Neurosci ; 25(2): 207-218, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-32183604

RESUMO

Iron deficiency is a public health problem that affects all age groups. Its main consequence is anemia, but it can also affect cognitive functions. Although the negative effects of iron deficiency on cognitive function have been extensively described, the underlying mechanism has not been fully investigated. Thus, to gain an unbiased insight into the effects of iron deficiency (ID) on discrete brain regions, we performed a proteomic analysis of the striatum and hippocampus of adult rats subjected to an iron restricted (IR) diets for 30 days. We found that an IR diet caused major alterations in proteins related to glycolysis and lipid catabolism in the striatum. In the hippocampus, a larger portion of proteins related to oxidative phosphorylation and neurodegenerative diseases were altered. These alterations in the striatum and hippocampus occurred without a reduction in local iron levels, although there was a drastic reduction in liver iron and ferritin. Moreover, the IR group showed higher fasting glycaemia than the control group. These results suggest that brain iron content is preserved during acute iron deficiency, but the alterations of other systemic metabolites such as glucose may trigger distinct metabolic adaptations in each brain region. Abnormal energy metabolism precedes and persists in many neurological disorders. Thus, altered energy metabolism can be one of the mechanisms by which iron deficiency affects cognitive functions.


Assuntos
Ferro , Proteômica , Animais , Dieta , Metabolismo Energético , Hipocampo/metabolismo , Ferro/metabolismo , Ratos
11.
Toxins (Basel) ; 13(11)2021 10 28.
Artigo em Inglês | MEDLINE | ID: mdl-34822548

RESUMO

Hemorrhage induced by snake venom metalloproteinases (SVMPs) is a complex phenomenon that involves capillary disruption and blood extravasation. HF3 (hemorrhagic factor 3) is an extremely hemorrhagic SVMP of Bothrops jararaca venom. Studies using proteomic approaches revealed targets of HF3 among intracellular and extracellular proteins. However, the role of the cleavage of plasma proteins in the context of the hemorrhage remains not fully understood. The main goal of this study was to analyze the degradome of HF3 in human plasma. For this purpose, approaches for the depletion of the most abundant proteins, and for the enrichment of low abundant proteins of human plasma, were used to minimize the dynamic range of protein concentration, in order to assess the proteolytic activity of HF3 on a wide spectrum of proteins, and to detect the degradation products using mass spectrometry-based untargeted peptidomics. The results revealed the hydrolysis products generated by HF3 and allowed the identification of cleavage sites. A total of 61 plasma proteins were identified as cleaved by HF3. Some of these proteins corroborate previous studies, and others are new HF3 targets, including proteins of the coagulation cascade, of the complement system, proteins acting on the modulation of inflammation, and plasma proteinase inhibitors. Overall, the data indicate that HF3 escapes inhibition and sculpts the plasma proteome by degrading key proteins and generating peptides that may act synergistically in the hemorrhagic process.


Assuntos
Proteínas Sanguíneas/efeitos dos fármacos , Venenos de Crotalídeos/toxicidade , Metaloendopeptidases/toxicidade , Venenos de Serpentes/toxicidade , Animais , Bothrops , Humanos , Venenos de Serpentes/enzimologia
12.
Eur J Nutr ; 60(3): 1375-1388, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32712699

RESUMO

PURPOSE: The metabolic benefits of the Mediterranean diet have been largely attributed to its olive oil content. Whether the ingested fat amount is relevant to these effects is not clear. We thus compared the effects of high-fat and normal-fat intake of extra-virgin olive oil (EVOO) on the liver proteome. METHODS: Three groups of mice were fed for 12 weeks with either normal-fat diets containing either soybean oil (control, C) or EVOO (NO) or a high-fat EVOO diet (HO). Body weight and food intake were measured weekly and serum parameters were analyzed. The liver was processed for data-independent acquisition mass spectrometry-based proteomics. The differentially expressed proteins among the groups were submitted to pathway enrichment analysis. RESULTS: The consumption of HO diet reduced food intake and serum triglycerides, while it preserved body weight gain, adiposity, and glycemia. However, it increased serum cholesterol and liver mass. The proteomic analysis showed 98 altered proteins, which were allocated in 27 significantly enriched pathways. The pathway analysis suggested stimulation of mitochondrial and peroxissomal ß-oxidation, and inhibition of lipid synthesis and gluconeogenesis in the HO group. Although the NO group failed to show significant liver proteome alterations, it presented reduced body fat, body weight gain, and serum triglycerides and glucose levels. CONCLUSION: The data indicate that the intake of the HO diet induced hepatic adjustments, which were partially successful in counteracting the detrimental outcomes of a high-fat feeding. Contrastingly, the NO diet had beneficial effects which were not accompanied by significant modifications on hepatic proteome.


Assuntos
Proteoma , Proteômica , Animais , Dieta Hiperlipídica/efeitos adversos , Fígado , Camundongos , Azeite de Oliva
13.
Cell Chem Biol ; 28(1): 105-112.e4, 2021 01 21.
Artigo em Inglês | MEDLINE | ID: mdl-33217339

RESUMO

Neuropeptides and peptide hormones are important cell-cell signaling molecules that mediate many physiological processes. Unlike classic neurotransmitters, peptides undergo cell-type-specific post-translational modifications that affect their biological activity. To enable the identification of the peptide repertoire of a genetically defined cell type, we generated mice with a conditional disruption of the gene for carboxypeptidase E (Cpe), an essential neuropeptide-processing enzyme. The loss of Cpe leads to accumulation of neuropeptide precursors containing C-terminal basic residues, which serve as tags for affinity purification. The purified peptides are subsequently identified using quantitative peptidomics, thereby revealing the specific forms of neuropeptides in cells with the disrupted Cpe gene. To validate the method, we used mice expressing Cre recombinase under the proopiomelanocortin (Pomc) promoter and analyzed hypothalamic and pituitary extracts, detecting peptides derived from proopiomelanocortin (as expected) and also proSAAS in POMC neurons. This technique enables the analyses of specific forms of peptides in any Cre-expressing cell type.


Assuntos
Encéfalo/metabolismo , Carboxipeptidase H/genética , Neuropeptídeos/análise , Hipófise/metabolismo , Animais , Encéfalo/citologia , Carboxipeptidase H/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Neuropeptídeos/metabolismo , Hipófise/citologia
14.
Toxins, v. 13, n. 11, 764, out. 2021
Artigo em Inglês | Sec. Est. Saúde SP, SESSP-IBPROD, Sec. Est. Saúde SP | ID: bud-4006

RESUMO

Hemorrhage induced by snake venom metalloproteinases (SVMPs) is a complex phenomenon that involves capillary disruption and blood extravasation. HF3 (hemorrhagic factor 3) is an extremely hemorrhagic SVMP of Bothrops jararaca venom. Studies using proteomic approaches revealed targets of HF3 among intracellular and extracellular proteins. However, the role of the cleavage of plasma proteins in the context of the hemorrhage remains not fully understood. The main goal of this study was to analyze the degradome of HF3 in human plasma. For this purpose, approaches for the depletion of the most abundant proteins, and for the enrichment of low abundant proteins of human plasma, were used to minimize the dynamic range of protein concentration, in order to assess the proteolytic activity of HF3 on a wide spectrum of proteins, and to detect the degradation products using mass spectrometry-based untargeted peptidomics. The results revealed the hydrolysis products generated by HF3 and allowed the identification of cleavage sites. A total of 61 plasma proteins were identified as cleaved by HF3. Some of these proteins corroborate previous studies, and others are new HF3 targets, including proteins of the coagulation cascade, of the complement system, proteins acting on the modulation of inflammation, and plasma proteinase inhibitors. Overall, the data indicate that HF3 escapes inhibition and sculpts the plasma proteome by degrading key proteins and generating peptides that may act synergistically in the hemorrhagic process.

15.
J Venom Anim Toxins Incl Trop Dis ; 26: e20200055, 2020 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-33088286

RESUMO

BACKGROUND: Bothrops atrox is known to be the pit viper responsible for most snakebites and human fatalities in the Amazon region. It can be found in a wide geographical area including northern South America, the east of Andes and the Amazon basin. Possibly, due to its wide distribution and generalist feeding, intraspecific venom variation was reported by previous proteomics studies. Sex-based and ontogenetic variations on venom compositions of Bothrops snakes were also subject of proteomic and peptidomic analysis. However, the venom peptidome of B. atrox remains unknown. METHODS: We conducted a mass spectrometry-based analysis of the venom peptides of individual male and female specimens combining bottom-up and top-down approaches. RESULTS: We identified in B. atrox a total of 105 native peptides in the mass range of 0.4 to 13.9 kDa. Quantitative analysis showed that phospholipase A2 and bradykinin potentiating peptides were the most abundant peptide families in both genders, whereas disintegrin levels were significantly increased in the venoms of females. Known peptides processed at non-canonical sites and new peptides as the Ba1a, which contains the SVMP BATXSVMPII1 catalytic site, were also revealed in this work. CONCLUSION: The venom peptidomes of male and female specimens of B. atrox were analyzed by mass spectrometry-based approaches in this work. The study points to differences in disintegrin levels in the venoms of females that may result in distinct pathophysiology of envenomation. Further research is required to explore the potential biological implications of this finding.

16.
Front Pharmacol ; 11: 1075, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32774304

RESUMO

The Araneae order is considered one of the most successful groups among venomous animals in the world. An important factor for this success is the production of venoms, a refined biological fluid rich in proteins, short peptides and cysteine-rich peptides (CRPs). These toxins may present pharmacologically relevant biological actions, as antimicrobial, antiviral and anticancer activities, for instance. Therefore, there is an increasing interest in the exploration of venom toxins for therapeutic reasons, such as drug development. However, the process of peptide sequencing and mainly the evaluation of potential biological activities of these peptides are laborious, considering the low yield of venom extraction and the high variability of toxins present in spider venoms. Here we show a robust methodology for identification, sequencing, and initial screening of potential bioactive peptides found in the venom of Acanthoscurria rondoniae. This methodology consists in a multiomics approach involving proteomics, peptidomics and transcriptomics analyses allied to in silico predictions of antibacterial, antifungal, antiviral, and anticancer activities. Through the application of this strategy, a total of 92,889 venom gland transcripts were assembled and 84 novel toxins were identified at the protein level, including seven short peptides and 10 fully sequenced CRPs (belonging to seven toxin families). In silico analysis suggests that seven CRPs families may have potential antimicrobial or antiviral activities, while two CRPs and four short peptides are potentially anticancer. Taken together, our results demonstrate an effective multiomics strategy for the discovery of new toxins and in silico screening of potential bioactivities. This strategy may be useful in toxin discovery, as well as in the screening of possible activities for the vast diversity of molecules produced by venomous animals.

17.
J Venom Anim Toxins Incl Trop Dis ; 26: e20190053, 2020 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-32362925

RESUMO

BACKGROUND: Crotalus durissus is considered one of the most important species of venomous snakes in Brazil, due to the high mortality of its snakebites. The venom of Crotalus durissus contains four main toxins: crotoxin, convulxin, gyroxin and crotamine. Venoms can vary in their crotamine content, being crotamine-negative or -positive. This heterogeneity is of great importance for producing antivenom, due to their different mechanisms of action. The possibility that antivenom produced by Butantan Institute might have a different immunorecognition capacity between crotamine-negative and crotamine-positive C. durissus venoms instigated us to investigate the differences between these two venom groups. METHODS: The presence of crotamine was analyzed by SDS-PAGE, western blotting and ELISA, whereas comparison between the two types of venoms was carried out through HPLC, mass spectrometry analysis as well as assessment of antivenom lethality and efficacy. RESULTS: The results showed a variation in the presence of crotamine among the subspecies and the geographic origin of snakes from nature, but not in captive snakes. Regarding differences between crotamine-positive and -negative venoms, some exclusive proteins are found in each pool and the crotamine-negative pool presented more phospholipase A2 than crotamine-positive pool. This variation could affect the time to death, but the lethal and effective dose were not affected. CONCLUSION: These differences between venom pools indicate the importance of using both, crotamine-positive and crotamine-negative venoms, to produce the antivenom.

18.
J. venom. anim. toxins incl. trop. dis ; 26: e20200055, 2020. tab, graf, ilus
Artigo em Inglês | LILACS, VETINDEX | ID: biblio-1135155

RESUMO

Bothrops atrox is known to be the pit viper responsible for most snakebites and human fatalities in the Amazon region. It can be found in a wide geographical area including northern South America, the east of Andes and the Amazon basin. Possibly, due to its wide distribution and generalist feeding, intraspecific venom variation was reported by previous proteomics studies. Sex-based and ontogenetic variations on venom compositions of Bothrops snakes were also subject of proteomic and peptidomic analysis. However, the venom peptidome of B. atrox remains unknown. Methods: We conducted a mass spectrometry-based analysis of the venom peptides of individual male and female specimens combining bottom-up and top-down approaches. Results: We identified in B. atrox a total of 105 native peptides in the mass range of 0.4 to 13.9 kDa. Quantitative analysis showed that phospholipase A2 and bradykinin potentiating peptides were the most abundant peptide families in both genders, whereas disintegrin levels were significantly increased in the venoms of females. Known peptides processed at non-canonical sites and new peptides as the Ba1a, which contains the SVMP BATXSVMPII1 catalytic site, were also revealed in this work. Conclusion: The venom peptidomes of male and female specimens of B. atrox were analyzed by mass spectrometry-based approaches in this work. The study points to differences in disintegrin levels in the venoms of females that may result in distinct pathophysiology of envenomation. Further research is required to explore the potential biological implications of this finding.(AU)


Assuntos
Animais , Peptídeos , Bothrops , Venenos de Crotalídeos/biossíntese , Caracteres Sexuais , Ecossistema Amazônico , Peptidomiméticos
19.
J. venom. anim. toxins incl. trop. dis ; 26: e20190053, 2020. graf, mapas, ilus
Artigo em Inglês | LILACS, VETINDEX | ID: biblio-1091020

RESUMO

Abstract Background: Crotalus durissus is considered one of the most important species of venomous snakes in Brazil, due to the high mortality of its snakebites. The venom of Crotalus durissus contains four main toxins: crotoxin, convulxin, gyroxin and crotamine. Venoms can vary in their crotamine content, being crotamine-negative or -positive. This heterogeneity is of great importance for producing antivenom, due to their different mechanisms of action. The possibility that antivenom produced by Butantan Institute might have a different immunorecognition capacity between crotamine-negative and crotamine-positive C. durissus venoms instigated us to investigate the differences between these two venom groups. Methods: The presence of crotamine was analyzed by SDS-PAGE, western blotting and ELISA, whereas comparison between the two types of venoms was carried out through HPLC, mass spectrometry analysis as well as assessment of antivenom lethality and efficacy. Results: The results showed a variation in the presence of crotamine among the subspecies and the geographic origin of snakes from nature, but not in captive snakes. Regarding differences between crotamine-positive and -negative venoms, some exclusive proteins are found in each pool and the crotamine-negative pool presented more phospholipase A2 than crotamine-positive pool. This variation could affect the time to death, but the lethal and effective dose were not affected. Conclusion: These differences between venom pools indicate the importance of using both, crotamine-positive and crotamine-negative venoms, to produce the antivenom.(AU)


Assuntos
Animais , Antivenenos , Crotalus , Venenos de Crotalídeos/análise , Distribuição Animal
20.
J Venom Anim Toxins Incl Trop Dis, v. 26, e20190053, abr. 2020
Artigo em Inglês | Sec. Est. Saúde SP, SESSP-IBPROD, Sec. Est. Saúde SP | ID: bud-3019

RESUMO

Background: Crotalus durissus is considered one of the most important species of venomous snakes in Brazil, due to the high mortality of its snakebites. The venom of Crotalus durissus contains four main toxins: crotoxin, convulxin, gyroxin and crotamine. Venoms can vary in their crotamine content, being crotamine-negative or -positive. This heterogeneity is of great importance for producing antivenom, due to their different mechanisms of action. The possibility that antivenom produced by Butantan Institute might have a different immunorecognition capacity between crotamine-negative and crotamine-positive C. durissus venoms instigated us to investigate the differences between these two venom groups. Methods: The presence of crotamine was analyzed by SDS-PAGE, western blotting and ELISA, whereas comparison between the two types of venoms was carried out through HPLC, mass spectrometry analysis as well as assessment of antivenom lethality and efficacy. Results: The results showed a variation in the presence of crotamine among the subspecies and the geographic origin of snakes from nature, but not in captive snakes. Regarding differences between crotamine-positive and -negative venoms, some exclusive proteins are found in each pool and the crotamine-negative pool presented more phospholipase A2 than crotamine-positive pool. This variation could affect the time to death, but the lethal and effective dose were not affected. Conclusion: These differences between venom pools indicate the importance of using both, crotamine-positive and crotamine-negative venoms, to produce the antivenom.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...